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ABSTRACT: We study various topological invariants on a torsional geometry in the presence
of a totally anti-symmetric torsion H under the closed condition dH = 0, which appears in
string theory compactification scenarios. By using the identification between the Clifford
algebra on the geometry and the canonical quantization condition of fermions in quantum
mechanics, we construct N' = 1 quantum mechanical sigma model in the Hamiltonian
formalism. We extend this model to N/ = 2 system, equipped with the totally anti-
symmetric tensor associated with the torsion on the target space geometry. Next we
construct transition elements in the Lagrangian path integral formalism and apply them
to the analyses of the Witten indices in supersymmetric systems. We explicitly show the
formulation of the Dirac index on the torsional manifold which has already been studied.
We also formulate the Euler characteristic and the Hirzebruch signature on the torsional
manifold.
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. Formulae @

1. Introduction

Flux compactification scenarios have become one of the most significant issues in the study
of low energy effective theories from string theories (for instance, see [l -] and references
therein). Non-trivial fluxes induce a superpotential, which stabilizes moduli of a compact-
ified geometry and decreases the number of “redundant” massless modes in the low energy
effective theory in four dimensional spacetime. This mechanism, called the moduli stabi-
lization, also gives a new insight into cosmology as well as string phenomenology ([H] and
a huge number of related works).

Flux compactification provides another interesting issue to the compactified geometry
itself: In a specific situation, for instance, the NS-NS three-form flux H,,,, behaves as a
torsion on the compactified geometry and gives rise to a significant modification [, i.e.,
the Kéahler form is no longer closed. This phenomenon indicates that the fluxes modify
the background geometry in supergravity in a crucial way. Of course, the Calabi-Yau
condition [fj] should be influenced by the back reactions from the fluxes onto the geometry.

If a certain n-dimensional manifold has a non-trivial structure group G on its tangent
bundle, this manifold, called the G-structure manifold, admits the existence of nowhere
vanishing tensors; for example, the metric (G C O(n)), the Levi-Civita anti-symmetric
tensor (G C SO(n)), the almost complex structure (G C U(m) where n = 2m), and the
holomorphic m-form (G C SU(m)). This classification does not exclude the existence of
torsion. (In this sense, a Calabi-Yau n-fold is one of the SU(n)-structure manifolds.) This
classification is also studied in terms of Killing spinors on the manifold. In particular,
the six-dimensional SU(3)-structure manifold has been investigated in terms of intrinsic
torsion [] and has been applied to the string theory compactification scenarios [§]. Since
we mainly study supergravity theories as low energy effective theories of string theories,
we always assume the existence of the metric g,,, and dilaton field ® on the compactified
manifold. In a generic case of the string compactification, we can also introduce non-trivial
NS-NS three-form flux H,,,, with its Bianchi identity. In type II theories appropriate R-R
fluxes are also incorporated. All of these are strongly related via the preserved condition
of supersymmetry. In the heterotic case, supersymmetry variations of the gravitino ,,,
the dilatino A and the gaugino x give rise to the Killing spinor equations

1
0=, = <8m + Zw_mab Fab) Ny = Dy (w-)ny (1.1a)
1 1
0=6r=—7 (rmvmcp - EHmnprm"p>n+ , (1.1b)
1

where 7, is the Weyl spinor on the six-dimensional manifold whose normalization is given
as 77177Jr =1, and W_jpap = Wmap — Hmap [B. Then the NS-NS three-form flux Hppp is



interpreted as a totally anti-symmetric contorsion (or equivalently, a totally anti-symmetric

torsion) on the manifold with negative sign: H™,,, = =1, = —I'"(np)- The analysis of

the manifold becomes much clear when we introduce a set of mathematical definitions
such as

Almost complex structure :  J,," = iniannJr , I = =0, , (1.2a)

3
Lee-form : 0=J.dJ = EJm"v[man} da? | (1.2b)
Nijenhuis tensor : Nyt = Jn 1V g Jp)? — TV g Jm? (1.2¢)
. . 3 3
Bismut torsion : TTSan)p = §quJner8V[Squ} = —§J[mqv‘q‘an} . (1.2d)

If there are no fermion condensations and H-flux condensation in heterotic string compact-
ified on the manifold with SU(3)-structure satisfying D, (w_)Jp, = 0, the compactified
manifold is complex and non-Ké&hler. Actually this is so-called a conformally balanced
manifold, on which the Nijenhuis tensor vanishes N,,,,,» = 0, the dilaton field is related to
the Lee-form # = 2d® and d(e 2®J A J) = 0. Furthermore, the NS-NS three-form flux
H,,pp is given by the Bismut torsion T,%}?p Bl. We can classify compactified manifolds
under specific conditions in the following way (see also the discussions in [[[0-[2]):

0 =249, d(e_mJ ANJ)=0 — conformally balanced (1.3a)
if=0 — balanced (1.3b)
if d(e_q)J )=0 — conformally Kéhler (1.3c)
if dH =dT® =0 — strong Kéhler with torsion (1.3d)

On the contrary, however, one has not understood a lot of mathematical properties of
the G-structure manifold such as moduli and moduli spaces. This is quite different from
the case of Calabi-Yau manifold [[J]. Because of the lack of knowledge, one has not been
able to discuss the massless modes on the ground state in the effective theory derived from
string theory compactified on the G-structure manifold.

Similarly, various kinds of topological invariants on torsional geometries have not been
analyzed, although many topological invariants on Riemannian manifolds have been well
investigated. Here let us briefly introduce some invariants: Suppose there exist Dirac
fermions in an even dimensional geometry. We define chirality on the Dirac fermions and
find the difference between the number of fermions with positive chirality and the number
of fermions with negative chirality at the massless level. This difference is a topological
invariant, which is called the index of the Dirac operator, or the Dirac index [[[4-[§]. We
also introduce the Euler characteristic as the difference between the number of harmonic
even-forms and the number of odd-forms on the manifold, and the Hirzebruch signature
as the difference between the number of self-dual forms and the number of anti-self-dual
forms. These invariants are described in terms of polynomials of Riemann curvature two-
form (see, for example, [[[7—[L9]). So far the index of the Dirac operator in the presence of
torsion has been studied [2q-RJ]. Unfortunately, however, the other indices on a torsional
manifold have not been analyzed so much. In particular, it is quite worth studying the



Euler characteristic on a complex manifold in the presence of torsion, which will give a new
insight on the number of generation in the flux compactification scenarios.

The main discussion of this paper is to analyze such kinds of topological invariants
derived from the Dirac operator, which appears in the following equations of motion for
fermionic fields in the supergravity [4):

1 1
0= Pl A)x — 5 o7 = zD(w “n A)x | (1.4b)

First, we define the index of the Dirac operator on the torsional manifold in the infinity
limit of 3:

index]) = ma Tr{F(5)e_5%} = éir% TI'{F(5)€_6%} , (1.5)

where Z is an appropriate regulator, given by the square of the Dirac operator (or, equiv-
alently, the Laplacian) in a usual case. Notice that since a topological value is definitely
independent of the continuous parameter 3, we can take the zero limit 3 — 0. This topo-
logical invariant can be represented as an appropriate quantum number in supersymmetric
quantum mechanics [[4] via the identification of the cohomology on the manifold with the
supersymmetric states in the quantum mechanics. To investigate this, we define the Witten
index in the quantum mechanics

. F By . F By
/lali%Tr{(_l) e h }:/lslg%)/dX<X|(_1) e X ). (1.6)
We identify ([.5) with ([.) via the identification of the the regulator % and the chirality
operator I'(5y on the manifold with the Hamiltonian . and the fermion number operator
(—=1)¥ in the quantum mechanics, respectively. The trace Tr denotes the sum of all tran-
sition elements whose final states (X | correspond to the initial states | X ). Second, we
rewrite the Witten index from the Hamiltonian formalism, as described above, to the La-
grangian path integral formalism. During this process, we introduce discretized transition
elements and adopt the Weyl-ordered form in order to avoid any ambiguous ordering of
quantum operators. Then we integrate out momentum variables and obtain the transition
elements described in the configuration space path integral. Third, we discuss the Feynman
rule which defines free propagators and interaction terms in the supersymmetric systems.
Finally, we evaluate the Witten indices in the quantum mechanical nonlinear sigma models
in appropriate ways. This procedure is summarized in a clear way by de Boer, Peeters,
Skenderis and van Nieuwenhuizen [PF, and Bastianelli and van Nieuwenhuizen [R§]. We
will apply this technique to the analysis of index theorems on the torsional manifold. To
simplify the discussion, we impose the closed condition dH = 0 on the NS-NS three-form
in the same way as [R1, ROJ]. This indicates that we only focus on the index theorems on
the strong Kéhler with torsion (|l.3d). Although this condition is too strong to find the
suitable solution in the heterotic string compactification with non-trivial fluxes [R, 4], it



is still of importance to analyze the manifold with such condition, which also appears in
type II string theory compactifications.

This paper is organized as follows: In section J we construct A" =1 and N = 2 quan-
tum supersymmetric Hamiltonians equipped with a non-vanishing totally anti-symmetric
field H,,pp, which can be regarded as the torsion on the manifold considered. In section B
we describe the transition elements in the Hamiltonian formalism and rewrite them to func-
tional path integrals in the Lagrangian formalism. We also prepare bosonic and fermionic
propagators in the quantum mechanics. This transition elements play significant roles in
the evaluation of the Witten indices in next sections. In section f| and f] the Witten index
in NV = 1 supersymmetric quantum mechanical nonlinear sigma model is analyzed. First
we review the Witten index associated with the Dirac index on a usual Riemannian man-
ifold without boundary. Next we generalize the index on the manifold in the presence of
non-trivial torsion H. We obtain an explicit expression of the Pontrjagin class and of the
Chern character on the torsional manifold. The Euler characteristic corresponding to the
Witten index in A/ = 2 supersymmetric system is discussed in section . This topologi-
cal invariant is also discussed on the torsional manifold. In section [ we also analyze the
derivation of the Hirzebruch signature on the manifold with and without torsion from the
N = 2 supersymmetric quantum mechanics. We summarize this paper and discuss open
problems and future works in section §. We attach some appendices in the last few pages.
In appendix [A] we list the convention of differential geometry which we adopt in this paper.
In appendix |Bf a number of useful formulae, which play important roles in the computation
of Feynman graphs, are listed.

2. Supersymmetric quantum Hamiltonians

First of all, we prepare a bosonic operator ™ and its canonical conjugate momentum p,,, in
quantum mechanics, whose canonical quantization condition is defined as a commutation
relation between them in such a way as [z, p,] = ihd]". Since we consider a quantum
mechanical nonlinear sigma model, we regard ™ as a coordinate on the target space of the
sigma model, where its index runs m = 1, ..., D. Since the target space is curved, the differ-
ential representation of the canonical momentum operator is given as gi pmg_% = —ihOp
equipped with the determinant of the target space metric g = det g,n,. We also introduce
a real fermionic operator 1® in the quantum mechanics, equipped with the local Lorentz
index a = 1,...,D. In the quantum mechanics of real fermions, we define the canonical
quantization condition as an anti-commutation relation {¢%, ¢°} = h§%. Since, under the

identification ¢* = \/EF“, the structure of this quantization condition can be interpreted
as the SO(D) Clifford algebra given by the anti-commutation relation between the Dirac
gamma matrices {I'% T'®} = 26% on the target geometry, we will investigate the Dirac index
on this curved geometry in terms of the Witten index in the quantum mechanics. First let
us discuss N/ = 1 supersymmetry, and extend this to N’ = 2 supersymmetry under a certain
condition. We should choose N'=1 or N' = 2 in the case when we want to study the index
density for the Pontrjagin classes, or for the Euler characteristics, respectively [@].1

! Alvarez-Gaumé [@] and Mavromatos [E] refer the ' = 2 (M = 1) model to N' =1 (N = 1/2)



2.1 N =1 real supersymmetry

Now let us introduce the N/ = 1 supersymmetry algebra with respect to a real fermionic
charge Q'

{Q',Q"} =2n" . (2.1)

Note that ! is the quantum Hamiltonian in A/ = 1 system, where the superscript “1”
indicates N' = 1. We will realize this algebra in terms of quantum operators =™, p,, and
¥®. It is useful to introduce a covariant momentum operator associated with a covariant
derivative Dy, (w — %H ) which appears in the equation of motion in the supergravity ([.4).
The covariant momentum operator is
_ h 1

7'(',(n 1/3) = p,. — 3 <wmab — gHmab) nob (2.2)
Later we sometimes use the description Wipep = Winab— %H mab- Since the Dirac operator acts
on spinors on the geometry, the Lorentz generator £ is given in the spinor representation,
which can be described in terms of the real fermions via the identification I'* = %1/1“
such as

ab_i ab_ba_i ab_ba:iab
D = (0T T'0%) = o (v — wPyt) = Su (2.3)

We should also define the action of the covariant momentum on the fermionic operator:

1
G S 08 =0, g G 0y = BT g 7 = (T — §H"pm>¢p ,
(2.4)
where ' is the Levi-Civita connection defined in appendix [A. Actually, the above

commutator is associated with the covariant derivative of the Dirac gamma matrix on the
target geometry.

By using the covariant momentum 7'(',(»; Y 3), let us represent the supercharge Q}{ and
the Hamiltonian ffhl, (where the subscript H denotes that the operator contains the torsion

H) as follows:

1 _1 m 1 l 1 ) —1
llr{ = ¢mg4777(n 1/3)9 4= ¢ g4 <pm - 5 <wmab - gHmab>¢ b>g 4, (25&)
1 h? h?

Note that we used the closed condition dH = 0. Since we used the complete square in
fff}, the magnitude of the torsion in the covariant momentum is changed to r5 Y. This is
consistent with the analysis of the Killing spinor equation in the heterotic theory [B4]. We
can also formulate the N' = 1 supersymmetric charges with introducing a (non-abelian)

supersymmetric quantum mechanics.



gauge fields on the target space:

Q= v"giF Vg1 QY QYY) = 2hk (2.6a)
1 1 mn ~(_ _1 h2 1 mn
Ay = 29 mam g g F T g + §[R(w) = 3wl ,,]
S F ™ (ETd) (2.6b)
79 = p %(Mmb n aHmab) P A (T8 | (2.6¢)

where we used the anti-hermitian matrix T, as a generator of the gauge symmetry group.
We also introduced a complex ghost field ¢ living in the quantum mechanics.

2.2 N =2 complex supersymmetry

Now we introduce two sets of real fermionic operators 9% (a = 1,2) and perform the
complexification of fermionic operators via linear combination

\/—(1/11 +is), 9= \/7(1/11 iy) . (2.7a)

Note that we used the convention ® = (¢®)f. Then the canonical quantization condition
is extended in such a way as

{(pa’ (Pb} =0, {@aaab} =0, {“Pa _b} héab (2'7b)

This is nothing but the SO(D, D) Clifford algebra. This complex fermion ¢® plays a central
role in N' = 2 supersymmetry, while ¢* consists of N' = 1 supersymmetry. Now let us
construct the N' = 2 supersymmetric model. Let us define the commutation relations
between the covariant momentum operator 7, and the complex fermions, which are given
in terms of the affine connection I'j, | in the same analogy as in the A" = 1 system:

1 1 1 _1
94 [T, ©"g™ 1 = ihTGpne” . gt[mm, pnlg™ 4 = —ih TG, 0p - (2.8)
The Lorentz generator coupled to the spin connection and the curvature tensor are ex-
pressed as
5% =~ ("7 — '), (2.92)
1 —1 ihz ab a—b
94[7Tm777n]g 4 = TI:Eabmn(W)E = _hRabmn(w)QO "2 (2'9b)

Next, let us express N = 2 supercharge @ and extend it as the supercharge equipped
with the torsion given by three-form flux H. In the same way as the N’ = 1 supercharge,
we will identify the de Rham cohomology on the manifold with the N' = 2 supersymmetry
algebra. In the case on the Riemannian manifold, we identify the exterior derivative d on
the geometry with the N' = 2 supercharge Q = gpmgiﬂmg_%, where m, is the covariant
momentum in the AN/ = 2 quantum mechanics defined as

h

Tm = Pm — §wmab Eab = Dm — Wmab (Paab . (210)



Let us introduce the torsion on the geometry. Following the discussions [R0, B§-B1], we
extend the exterior derivative d to dg in such a way as

dg=d+HA, (dg)*=(dH)A . (2.11)

This means that dg is nilpotent up to the derivative dH, i.e., this yields the equivariant
cohomology. In this paper we always impose the vanishing condition dH = 0. In addition,
by using the Darboux theorem, we can identify the one-form with the holomorphic variable,
while the adjoint of the one-form can be identified with the anti-holomorphic variable.
Thus, we identify the exterior derivative dy and its adjoint dTH with appropriate operators

in terms of complex fermions ¢ and " in the quantum mechanics:

1 1
dr < QuE=¢"g1Tng T + Qi y, """, (2.12a)

— 1 1
dl, o Qu=0"gimmg i + AiHymny 7 "7"F . (2.12b)
We wish to interpret Qg as the supercharge”, associated with the exterior derivative
dyg = d + HA, while Qg associated with d > 1-e., the adjoint of the derivative dg. Here
we also introduced the scale factor «, which should be fixed compared with the NV = 1
supercharge. In order to fix the coefficient «, let us truncate the supercharge Qg to the
supercharge Q}{ in the N’ = 1 supersymmetry (B.5) via the restriction 9§ = 0 and ¢§ = ¢*:

1

1 1 ] 1
QH - % m{gme g 1 — %(wmab - aHmab)wawb} = EQ}{ . (213)

Since we have already known the N/ = 1 supercharge Q};, we can fix the coefficient

1
a=g=a. (2.14)

Due to the first Bianchi identity Rj,ppq(w) = 0 and Dyg(w)Hqp) = %(dH)dcab =0, we
find that the supersymmetry algebra is given by

{Qu,Qu} == (dH)abcd e =0, {Qu.Qu}= % (AH)apea 4 =0, (2.15a)

(Qu.Qu} = Wiy . (Qur. Hir) =~ @i, (@) = 0. (2.15b)

The vanishing condition of the last commutator guarantees the supersymmetric system,
in which the energy levels of the bosonic and fermionic states are degenerated. Now we
explicitly express the Hamiltonian 77 in terms of the complex fermions:

1

1 _1 _ l
Qu =™ (g4pmg T — iWmap PP+ ~Hpap w“b) :

7 1 1
sHpa w“”) =" <g47rmg 14 3
(2.16a)

3

1 1 7 _ 1 _ _1
%H = 59 4 {ﬂ'm + §Hmab (<Pab + Spab) }gmn\/g{ﬂ_n + §and(<,06d + SOCd) }g 4
1 3h 3h _
2Rabmn (w)sp SDnSDaSDb+ a ( npq) <SD Sanq_|_g0m npq __ 5 gmnsopq _ 7gnfm80pq>
1 mnpq >mnpq mn—pq h Pq m—n h2 mnp
8HmnrH ( + @ - 290 QOp > - _Hmqu @ EHman .
(2.16b)



There exists a comment on the Hamiltonians in the A’ = 1 and in the V' = 2 systems.
The N' = 1 Hamiltonian cannot be obtained by truncation of the AN/ = 2 Hamiltonian,
because the truncation 1§ = 0 is no longer consistent at the quantum level since the anti-
commutation relation {1 + i1$, % 4+ i1b5} becomes non-zero via the truncation. On the
other hand, we need not use such anti-commutation relation when we reduce the N' = 2
supercharge to the charge in the AV = 1 system.

3. Path integral formalism from Hamiltonian formalism

In this section we will discuss a generic strategy to obtain the transition element
(zx |efg%7| y) which appears in ([.§). We will introduce a number of useful tools to in-
vestigate the quantum mechanical path integral, i.e., the complete sets of eigenstates, and
the Weyl-ordered form. Next we will move to the concrete constructions of the transition
elements in the N/ = 1 and in the N/ = 2 systems. In this paper we omit many technical
details which can be seen in the works [R5, PG. We mainly follow the convention defined
in ] Before going to the main discussion, for later convenience, let us take a rescaling

on the fermionic operators which we introduced in the previous section:

N =2 system: % — VR, (3.1a)
N =1 system: 9* — VR, ghost fields: o — Vhs? . (3.1b)
3.1 General discussion

In order to formulate the transition elements we should prepare a number of tools. Let ™
and Dy, be the operators of the coordinate and the momentum, respectively, while ™ and
pm denote their eigenvalues.? According to [R5, Bf], let us introduce the complete set of
the Z-eigenfunctions and the complete set of the p-eigenfunctions

/dD:c|w>\/g<x><x| = z/de|p><p| , (3.2)

where g(x) = det gimn(x). We also define the inner products and the plane wave such as

(#ly) = =" =1), (pl) =070~ (3.30)
(z|p) = mexp (%p-x)g‘i ; (3.3b)

where the plane wave is normalized to

Jav e (o)) = @) ). (3:30)

which appears when we evaluate the transition elements with infinitesimal short period. In
order to discuss the path integrals for Dirac fermion operators, let us also introduce a set of

2The symbol “ ” on an operator is omitted if there are no confusions.



coherent states for fermionic operators in terms of the operator * satisfying {$“, @b} = 5%,
and a complex Grassmann odd variable 7:

)
|

y=n"ln), (3.4a)

1oy, @0)=0, &
(7l = (mn" . (3.4b)

o? U
(0], (0fp" =0, ¢

|
(1

The inner product of these coherent state is given by (7| ¢) = ¢7°¢“. In the same analogy
as (B.2), we introduce a complete set of the Dirac fermion coherent states:

D
b= / [T dantdn® 1n)e ™" (], (3.5a)
a=1

D D
[[an* = ag?agP~"---an', ] dn* =dn'dp*---dp” . (3.5b)
a=1

Generically we define the following matrix element M (z,y) in the quantum mechanics:

M(z,y) = (2|0, p)y), (3.6)

where |y ) and (z| are the initial and final state, respectively. Now we are quite interested
in the transition element with respect to the quantum Hamiltonian .57 and a parameter 3:

T 70.G:0) = (=7 oo (D7) 19.6) (37)

Next we introduce IV —1 complete sets of position eigenstates xj and of the fermion coherent
states Ag into the above transition elements. At the same time let us also insert NV complete
sets of momentum eigenstates pi and of another fermion coherent states & to yield

(zilexn (= 257 1.0)

N-1 N-1 B N N-1 B
= / [T d%: [T dxode e TT dPp; [] déjrdey e 5o
i=1 i'=1 j=1 §/=0

N—-1
— € _
X H(xk+1,>\k+1\pk,§k>eXp< ﬁc%”\iv(%r Dk 1; ks = (§k+)\k)>><pka§k’xka)‘k>
k=0
LN by, N N-1
= o) ' / 1 2nh) [1 a7 ] dejag;
=1 =1 =0
e N1 k+1— Tk Ek—E&k—1 €k
_ 1— = 1 =
XeXp<n-£N1+ﬁ [%pzm +7 R, - —ﬁfw(wk+%,pk+1;£k,£k%)]>-
k=0

(3.8)

Notice that the subscript & denotes the k-th complete set of the bosonic eigenstates, or

the k-th complete set of the fermionic coherent states. We also note that y = zq, z = zp,

T =M, (=X = &_1. We adopt the midpoint rule Ty 1= %(ﬂjk+1 + ) and & _1 =
2 2

,10,



%(fk +&k—1). The factors y/g(x) compensate exactly the g% factors from the plane waves
in the inner products. Furthermore, we integrated the arguments \; and )\, to yield a

useful equation
/kadAk N [PYS R ((JN (3.9)

where f()) is an arbitrary function of the fermionic variable A. Notice that J is the quan-
tum Hamiltonian in terms of quantum operators, while J&y is its Weyl-ordered form. The
translation from the operator to the Weyl-ordered form is given in terms of the symmetrized
form j/i\’é by

H = H + further terms = SRy . (3.10)

Integrating out the (discretized) momenta and taking the continuum limit N — oo, €/5 —
dr with Zi\;_ol e/f — f81 d7, we obtain the continuum path integral description in a
following form:

1
T PING _ Nal < _ _S(ln ) _S(source) > ] 3.11
Note the followings: The action S is given in terms of the interaction terms in the
Lagrangian derived from the Legendre transformation of Weyl-ordered Hamiltonian, which
we will explicitly show later. We introduced the external source of fields contained in the
action S°wee) o define their propagators. The additional factor g(z) appears due to

(int) at the point z and due to the integrating out the free

the expanding the metric in S
kinetic terms of fields (see, for detail, section 2.1 in [R6]). The symbol (- -)g denotes the
contraction of interaction terms in terms of propagators and setting the external source to

. . _ 1 g(int) _ 1 ¢(source .
zero. From now on we simply abbreviate <e 8t — 7.5 )> as <exp(—%5(mt))>.

0
3.2 Weyl-ordered form of quantum Hamiltonians

The next task is to study the Weyl-ordered form of the Hamiltonians 7' and obtain the

actions S in the A" = 2 and the N/ = 1 systems, respectively. The symmetrized form

of the bosonic operators is defined by

[ MG @y =1 (a%m)k'” (a%n)e" ("B + Buz™) (3.12a)

N=Dkm+ > Lo (3.12b)

In the N’ = 2 complex fermions’ case we define the following anti-symmetrized form:

~a\Ma (2= \np | — i Ma i "o —~a ~\N
gN'{(SD ) (Spb) }S = g (aaa> (8ﬁb) (OéaSD + ﬁb@b) ; (313&)
N=>"ma+ Y mp, (3.13b)
a b

— 11 —



where we perform the left derivative with respect to the Grassmann odd variables o, and
(P, In the N = 1 real fermions’ case, the anti-symmetrized form is defined by

0
(s = 5 T () o)™ @1

By using the above rules, we obtain the Weyl-ordered form of the A = 2 Hamiltonian

1 h’
o = (e I0) L g ]
h2 h2 hQ
=5 B () ("B )s + 35 Hp H™+ 55 O (Hope) | (7" )5+ (279"
h2
e Hr Hy” [ (275 + (P75 — 2557 (3150
. . B , . ik _
T ) = T+ 5 Hinat (67 + %) = P = ihomay 97" + 5 Hona (¢ + 7). (315D)

and of the N/ = 1 Hamiltonian

. 1 (1) (— h? 1
%I}Nv =5 (gmnﬂ'?(n 1)7T7(7, 1)>S + g{gmnrp anp + _gmnwfmab W—nab}

2 Omgq 9
h2 mnp h2 « mn AT A
- ﬂHman - 7an(1/} )S(c Tac) ’ (3163‘)
~ iR
7T7(n_1) =DPm — ZEw—mab T,Z)ab - ihA%(éTTaé) . (3.16b)

To proceed computations in path integral formalism in the N’ = 1 system, we would
like to add a second set of “free” Majorana fermions in order to simplify the path integral
in the A/ = 1 system in the same way as the one in the N' = 2 system. Denoting the
original Majorana fermions ¢ by ¢{, and the new ones by 1§, and combining them, we
again construct Dirac fermions x® and Y as

o1 Y
=l -V

Notice that, in this context, 1§ differs from the second component of the previously de-

O +iyg) (vf —i3) . (3.17)

fined Dirac fermions ¢® because now 9§ is introduced as a “free” fermion in the N' =1
Hamiltonian.

3.3 Explicit form of the transition element in ' = 2 system

We are ready to discuss the explicit form of the transition element in the NV = 2 system
in the framework of the Lagrangian formalism. Let us first decompose the bosonic and
fermionic variables into two parts, i.e., the background fields and quantum fluctuations in
such a way as 2™ (1) = a7,(7) + ¢"(7) and (1) = &, (1) + £4.(7), respectively. These
background fields follow the free equations of motion whose solutions are

ngg(T) =2"+ T(Zm - ym) ) ggg(T) - Ca ) Ela)g(T) - ﬁa ) (318)

- 12 —



with constraints (via the mean-value theorem)

0
q"(—1) =¢™(0) =0, / dr¢™(t) =0, (3.19a)

§.(—1) = €4,(0)=0. (3.19b)

Then the description of the transition element in the configuration space path integral is
given in the following form (see eq. (2.81) in [R4)):

(lesp (= 25 ) <) =(§§Z§>%(2Wﬁ2)m o (= 857)) o

o % St — _ %( Sy — 5O, (3.20b)
1 1 [0 1 dz™ dz™ mon mon _ a
—ﬁsH:_%lldTigmn(x)<?F+b c’+a’a ) + 7l
0 ca d b
_/1d75ab§qug b
0 dz™ Za b ab | Fab
- [ @l — S+ E))
hofo ZbecE
+ 2 / A7 et 0(2) §E¢°E
0
. % / dr Habe(x)Hcde(x) <£abcd + Eabcd _ 2£abgcd>
-1
i 0 _ _
_% / dfam(anq(x))(émg"pq+£m£"”q)
-1
0
_Bh / dr G (2) | (3.20¢)
8 J1
Ga () =™ (@) { T8y (0T (@) + wran (@) ()}
+ ;Hmnp(x)Hmnp(x) ’ (3'20d)
1 1 0 1 dqm dqn
TR ﬁh/_ldegm"(Z)<dT ar Tt a)
0 ca d b
- /1 d7 dgp Squgé.qu . (3206)

Note that we introduced anti-commuting ghost fields "™, ¢ and a commuting ghost field

am

associated with the integrating out of momentum variables. They also appear in the
N =1 system. We should notice that the metric in S(© is given at the point z, not at the

intermediate point x, while the metric, spin connection, and the fluxes in Sy are given at
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the intermediate point x. We can also define the propagators in this system:

(™(0)q" (7)) = —Bhgm" 2) Ao, 7) (3.21a)
(a™(0)a™(1)) = Bhg™(2) 6(c —T) , (3.21b)
(b (o) (1)) = —%hgm"( )o(o —7), (3.21c)
(€4u(0)E0u(T)) = 6% 0(0 —7) (3.21d)
(€au(0)E0 (7)) = 0 = (€2, (0) () (3.21¢)

where the 6(o — 7) is the “Kronecker delta”, and —1 < 7,0 < 0. The definitions of various
functions are defined as A(o,7) = o(r+1)0(c—7)+7(0+1)0(r—0) = A(7,0), O(T—7) = 3,
O(t — o) = —0(c — 7) + 1, and so forth, which we list in (B.1]) (see also [24]).

3.4 Explicit form of the transition element in /' = 1 system

We can also describe the transition element in the A/ = 1 supersymmetric quantum sys-
tem in terms of the dynamical bosonic and fermionic fields and free Majorana fields (see

eq. (2.81) in [Pg]):

_ 08— g(z i 1 e _1g(int)
(Z,U>77gh|eXP <_%‘%ﬂl})|y,<a<gh> = g( ) (27Tﬂh)D/2 enaC ¢'leh Cgh<e 75 H >,

(3.22a)

1mn 1
MaC” + Tgh * Con — S( O — _ = (1 — sy, (3.22b)

_ﬁsl,H :ﬁaga + ﬁgh : Cgh

1 0 1 dz™ dz"™
dr . = 4 pmen m, mn
Bh/ 29 ()<dT ot C+aa>

0 _ dAZ
_/_1d7-<5ab§ b+ )

1 [0 dz™ a
- 5/_1(17 ?w—mab(ﬁﬂ) Pyl

0
—/ dT dLA ( )(gghT ggh)

71

/ dr F2, () 07 (Ban T £an)

-2 / dr Gy (x) (3.22)

G1(a) =0 () { by ()T 0) + a0 |
S Hon () H™ (2 (3.224)

ot [ (g 4 )
+{0u Egug b Tdi}> : (3.220)
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In the same way as (B.1§), the dynamical fields are decomposed into the background fields
and the quantum fields

1
w%(T) = w%,bg(T) + w(f,qu(T) ) w(ll,bg(T) - E(Ca + ﬁa) s (323&)
€an(T) = Can + Cu(7) ian(7T) = Tign + ¢l () - (3.23b)

Notice that the metric in S§O) is given at the point z, not at the intermediate point =z,
while the metric, spin connection, and the fluxes in Si y are given at the intermediate
point z. In the same analogy as the N' = 2 system, we introduce the bosonic and fermionic
propagators. The propagators with respect to the bosonic quantum fields ¢ and the ghost
fields b™, ¢™ and a™ are same as the ones (B.21)) in the N' = 2 system. Here we newly
introduce the propagators with respect to the real fermion ¢{ ,, given by the combination
with two Dirac fermions (B.23d). Since we have already introduced the propagators with

respect to the Dirac (complex) fermions qus We can derive the propagators of Y] qu in such
a way as
(0 (o) qu(r)) = 56 (60 —7) — 0 — ) (3:24)
The propagator of ghost field ééh is also given as
(e (o) (7)) =050(c — 7). (3.25)

4. Witten index in N = 1 quantum mechanics

In this section we will discuss the Witten index in the N' = 1 quantum mechanical system
derived from the path integral formalism. To obtain this, we will analyze Feynman path
integral in terms of Feynman (dis)connected graphs. Since the form of the Witten index
(or equivalently, the Dirac index) is same as the one of the chiral anomaly, we refer to the
derivation of the chiral anomaly given in section 6.1 and 6.2 of [2§].

4.1 Formulation

As mentioned before, by using the identification between the Clifford algebra on the target
geometry and the anti-commutation relations of fermions in the quantum mechanics, we
can describe the Dirac index equipped with the regulator & in terms of the transition
element of N/ = 1 quantum mechanics

index) (@) = éin%] Tr{T 5077} = éir% Tr{(—l)Fe—ngfI}}

()P 1

— lim T[] (8 +7%) e 77 . (4.1)

£B—0 2D/2

Note that the chirality operator I'sy on the target geometry can be identified with the
fermion number operator (—1)¥ in the A/ = 1 quantum mechanics, i.e., the chirality
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operator is defined as I'(5) = (—i)P/21112... TP the number operator (—1) is replaced
in terms of the fermion operators

L =V2i = (" +%%) ., T =02 (00 +97). (4.2)
a=1

Notice that the fermion g, which is now included in the path integral measure while does
not appear in the Hamiltonian, has dimension 27 /2. Then we should divide by 2D/2 from
the formulation (—i)P/2 [T2_, (3% +3%) by hand. (See the explanation in section 6.1 in 2]
and we will find that this factor is canceled out via the fermionic measure computation.)
The symbol Tr in the above expression of the index is defined as

D —
TrO = /deO\/g(xo) H (d¢?dCa) e (0, O] 20, C) - (4.3)
a=1

Then, inserting the complete set of the fermion coherent states (B.§), we obtain the ex-
plicit form of the Dirac index, i.e., the Witten index with respect to the A" = 1 quantum
mechanical path integral:

. (=P < _ = Lo
index P(w) = lim (2[2/2 / dPzo/g(x0) H(dnadn“dC“dCa) H +2") [ n)e™™
a=1 b=1

B—0
— B
X <$0777‘6Xp - g%H ’x07C> . (44&)
Here the appearing transition element has already described in the previous section such
as
— ﬁ’\1 1 Tl 1 (int)
(20,7 | exp ( - ﬁ%ﬂHMﬂUO,Q :W e" <eXP ( - ESLH )> ) (4.4b)

1 (int) 1 0 M N m n m_n
_hSI,H - 2Bh /ldT{gmn(x)_gmn(xo)}<q q +b"c" +a"a >
10 ho[°
_ 5/ dT qmwfmab(l') %b _ %/ dT gl(.%') s (44C)
-1

-1

where £ = 20+ ¢, W_map(2) = Wmab () — Hpap () and 9§ = ¥ bg—l—z/)iqu(T). The functional
G1 () is defined in (B.22d)). The fermionic terms are summarized as

D _ D D _ _ b
/ H(dﬁadnadC“dZa> T TI@ +3)1m)= / H(dmdn“dC“dZa) e“”_?"*c"]_[(nb +¢)
a=1 b=1
D

/ H (i dcmdC, ) T (o +2).

- (4.5a)

The last factor becomes a fermionic delta function §(n 4 (), hence ((|n) = S can be
replaced by unity. For the same reason, we rewrite other exponential factor in such a way
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as (¢ —mm = —3(n—¢)(¢ — 7). Let us see the measure:

D
[T dedn®d¢®dde = [ [ dFad¢® - 2PA(C + m)P -+ d(C + m)'d(n — ' -~ d(n = )P
a=1 a

(4.5b)

Thus, combining the above two equations, we show

J T dndce [2Pa@cm? - d@n) dn =0+ dln - 0P| e ¥ 0D T] (1 40
a b
= / [T dMad¢* TT (P —7") - (4.5¢)
a b

This is again the fermionic delta function, which annihilates the exponential factor €7 from
the Weyl-ordered Hamiltonian. We perform this fermionic delta function to the transition
element. Generically we consider the following equation in the AN/ = 1 system:

[ amace e ) en (S ) =2 [Tlavta vt 450

The factor 2°/2 cancels the factor 2772 in ([f4), which we introduced caused by the free
fermion v§. Next, rescaling the fermions ¢ by a factor (Bh)_% as YP§ — (ﬁh)_%l/}?, we
remove the Sh dependence in the path integral measure. Here we show the Witten index
in the path integral formalism:

indexP(w) = 271' D/2 /dDmO\/ x0) H dyf bg<exp ( - %Sﬁf};))> 7 (4.6a)

_%Sﬁr};) = _i /1 dr %{gmn(x) - an(ﬂ?o)} <qmqn +0"c" + aman)

Bh
0
i [t o)+ a2 [ G,

where x = zg + ¢. In addition, all the bosonic and fermionic propagators are proportional
to Gh:

(q™(@)g" (7)) = =Bh g™ (x0) Ao, 7) (4.7a)
(4"(0)q" () = —Bhg"™ (x0) (o + 6(r = 7)), (4.7h)
("(@)i"(r)) = —Bhg™ (w0) (1= (7)) . (4.7¢)
(a™(0)a" (7)) = Bhg™ (x0) 6o — 7). (4.7d)
(B (0)e" (7)) = ~2Bhg™ (0) 60— 7) (4.7¢)
(8 a0V (7)) = 5005 (B0 —7) — b(r — ) . (47)

The properties of these functions are seen in (B.l)). In the end of the evaluation of the
path integral, we should take a limit 8 — 0. There are a number of comments to verify
the path integral:
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e Disconnected graphs should contribute to the functional integrals, called the Feynman

amplitudes 23, ).

e Graphs of higher order in 8h do not contribute to Feynman amplitudes in the van-
ishing limit 8 — 0.

e Terms linear in the quantum fields ¢"* do not contribute because of the periodic
boundary condition ¢"(—1) = ¢"™(0) = 0.

e Terms linear in the quantum fields ¢"* do not contribute because of the periodic
boundary condition and the mean-value theorem (B.194), while the terms linear in
Y] qu contribute because there are no restrictions on the quantum fermion fields
except for £, (—1) = &5,(0) = 0.

e We could, for convenience, choose a frame with Op,gpq(z0) = 0, called the Riemann
normal coordinate frame. Due to this we find d,,e,% = 9, E," = 0, anq(xo) = 0 and

wmab(Zo) = 0. Notice, however that 9,0q€m*(x0) # 0, Omwnas(zo) # 0 and so forth.

e The torsion given by the NS-NS flux H,,,, (or, in mathematically equivalent form,
the Bismut torsion T®)) is also expanded in the Riemann normal coordinate frame

around xg.

e The Feynman amplitudes should be independent of the target space metric, at least

invariant under the rescale of the metric.

The torsion is given by the NS-NS three-form flux H,,;,;, which is represented in terms of
the Bismut torsion 7®) in the supergravity [24):

3 T S 3 T S
Hynp(@) = 5T Ty V(1) (@) = 5T Tn" " Oy ) () - (4.8)

As mentioned in the above comment, we will take the Riemann normal coordinate frame
at the point xg. At this point we can set the flat metric at the lowest order approximation

in the following way:

gmn(ﬂfo) = 0 8pgmn(x0) =0, 8paqgmn(x0) ?é 0. (4-9)

Due to ([.§), and since the complex structure is proportional to the metric, the flux (or
the torsion) should be also expanded around the point xg with the values
3
Hynp(x0) = §quJner83[qu} (o) =0, OgHmnp(zo) #0. (4.10)
By using this, the evaluation of the path integral becomes much simpler.

Note that we rewrite the derivative of the spin connection in such a way as

0 0
anwfmab(xO) / . dr qun = _% <8mwfnab(x0) - 8nwfmab(x0)) /1 dr qmqn
1 0
= §Rabmn(w—(x0))/ dr qmq-n
—1
1 0
= §Rmnab(w+(x0)) / . dr qm(jn ) (411)
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where we used the symmetricity on a Riemann tensor with torsion Rpgmn(w-)
Rppnpg(w) — (AH)pgmn and the periodicity of the bosonic quantum fields ¢"(0) = ¢"™(—1).
Furthermore we also generalized the derivative to the covariant derivative because now we
analyze on a point zo on which the torsion free connections vanish: I'f (20) =wmap(T0) =
Hmab(xO) =0.

Let us evaluate the functional integral in terms of the bosonic propagators (f.7) at
the point xg. The exponent <exp(——S(mt))> contains both connected and disconnected
Feynman graphs. First we analyze connected graphs, then we summarize them to obtain

the products of connected graphs. Let us introduce the effective action Wy by e~ Wi =

<exp(——5(lm))>, which is expanded as

=S5 3et)) o

where ((---)) indicates the value given only by the connected Feynman graphs.

For later discussions, it is also worth mentioning that the volume form and the Riemann
curvature two-form are given in terms of the vielbein one-form e* = e,,,*dz™ in the following
way:

pov/g(wo) E017b = ebt Ao A el (4.13)

Furthermore, we also find the following formula:

D
[ TLavt vy = ()P gmesen. (414
a=1

The trace of the odd number of the curvature two-form vanishes because the permutation
of the two-form is symmetric but the flip of the indices is anti-symmetric tr(R?*~1) = 0.

4.2 Pontrjagin classes
4.2.1 Riemannian manifold

In this case S; (i) ) ecomes much simpler than (£.6d]) because there are no terms from H-flux.
The spin connection w_ is also reduced to w. We also easily find that the terms equipped
with higher derivatives carrying more than three bosonic quantum fields ¢ always generate
higher-loops Feynman graphs because of the absence of the tadpole graphs. Furthermore,

(int) .

the terms of order in $h do not contribute to the final result. Then we truncate S, in

the following way:

Rmnab(w(ﬂr(])) w%,bg¢?,bg ’ (415)

. 0
—lS(mt) L Rmn(w(xo))/ drq™q", Rpn = 1
h 1 2

YT

where we used ({.11) with H = dH = 0. Then, the path integral form of the Witten index
without H-flux is reduced to

indexP(w) = hm D/2 /deo\/TOH dyf bg<exp< 2;71Rmn /_01 qumq">> .

ﬁ—»O 271'
(4.16)
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Let us first evaluate the sum of connected graphs:

_%W = log <eXp ( - ﬂ?hRmn /_01 qumqn>>
. 0

_ Z%(_Q’%h)’“zgmlm...zamm/ ar - (™)) (4746 ().
k=1 a

(4.17)

Since the two indices in the Riemann tensors are anti-symmetric whereas the propagators
are symmetric with respect to the exchanging of bosonic quantum fields, we easily find that
the contraction at the same “time” 7; yields a vanishing amplitude. We also know that the
partial integration is allowed since ¢ (7;) = 0 at the end points. Then, there are (k — 1)!
ways to contract k vertices and the symmetry of each vertex in both ¢ yields a factor 251,

Then we find that the effective action (f.17) is described as
__W Z k! < zﬁh) k ) 2k 1( 65) mlanWmm' : 'RmknkgmeQana' : ‘gnkml

0
X / dry - - d70n, A(71, 72)0ry A(T2, 73) - - - Op_, A(Tho—1, Tkt ) O A(Th, T1)
1

11
~ 2 kz i tr(R) i (4.18a)
0
Iy = / dry - -dr [+ 0(r — )| [+ 0(r2 — 73)] -+ [0+ 0(7 — 1)) (4.18b)

where we used trR! = 0. By using the formula (see appendix A.4 in [2§))

x  k

y y/2 1 y)2
S o (Y 4. 41
P gk T8 sinh(y/2) 3!(2) + ’ (4.19)

we summarize the form of the effective action

1 1 R/2
W =501 (i) (4.20)

Furthermore, in order to remove the overall factor in front of the path integral (f.4), we

rescale the background fermions ¥{ bg T b Then we obtain the path integral form

of the Witten index in such a way as

index P(w /d oV g(xo) Hd?/)l be exp[ trlog <ﬂ>] , (4.21a)

sinh(—iR/4m)
tr(Rk) = lemRmzm o Ry, gt ghems L gkt (4.21b)

Due to the property of tr(Rk), this value becomes zero when D = 4k + 2. Let us simplify
the formula ([£.21) by integrating the background fermion VY be of (f.21]) with noticing the

formulae ({.13)) (in particular, eq. (f.14)):
, 1 iR/An 1 ,
d = —trl — mn = = Rimna @ . (4.22
index P (w) /M exp [2 rlog <sinh(iR/47T)> R 2R p(w)e® Ne (4.22)
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This is the well-known form of Dirac index on the Riemannian manifold M. The integrand
is called the (Dirac) A-genus.

4.2.2 Torsional manifold

This case is still simple. Since there does not exist an interaction term with single quantum
fermion, all the Feynman amplitudes are of order in (8h)¥, where k is a non-negative integer.
Thus, since we are interested only in the amplitudes of order in (8%)° which remain in the
vanishing limit 3 — 0, we can neglect the last term in (f.6H) which yields graphs of higher
order in Bh. We can also neglect the interaction terms including more than three quantum

0

fields which yield more than two-loops graphs. Thus we truncate Siir}{ carrying only two

bosonic and fermionic quantum fields to

st ) [ o
h 1,H Qﬁh mn . )
where we used ([.17) with dH = 0 and
1
Rﬁ;ﬁ? = §Rmnab(w+(x0))wibgwl1),bg . (4.23b)

The effective action, or the functional integral of the connected graphs are given in terms

of (ETD):
° ) N 0 N 0 N
i =30 i (55 )= m(gm) ((mn [ o)) a2y

—ZN,( sgi) B B [ ram (@ ) @i o)),

where we abbreviated ¢f ,,, = ¢*. This is exactly same equation as ({17 except for the
Riemann curvature tensors. Then, after the rescaling of the background fermion fields, the
result is given by ([.21) in the following way:

—iR™)
index D(w /d o/ g(z0) Hd?/)l be exp[ tr10g< : ZR'+ /4w )} (4.252)

sinh(—iR(+) /4r)

(R(+)) = R1(”rJLr1)n1 R1(”rJLr2)n2 R%gnk n1m29n2m3 e g"kml 5 (4.25b)
1 a
R = 5 Runab (@4 (20)) 07 gt g - (4.25¢)

The most significant point is that we obtained the same result which appears in the Mavro-
matos’ work [P0-PRZ. This is exactly same equation as (f17) except for the Riemann
curvature tensors. Then, after the rescaling of the background fermion fields, the result is
given in the following way: Finally, let us integrate the background fermion ¢‘f7bg of ({£.23)
in the same analogy as ({.22):

index P() = / exp Ftr log <M>} (4.26a)

sinh(iR(+) /4)
tr(REL) = Ry, R, - Ry, g™ 72g"me - g, (4.26b)
1
Rg;;z = §Rmnab(w+)ea N 6 : (4266)
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5. N = 1 quantum mechanics for internal gauge symmetry

In this section we will focus on the gauge field and the invariant polynomial derived from
the path integral. The transition element is described in terms of the quantum Hamiltonian
in (R.9). Since the é-ghost field in (2.6) are independent of the other fields, the path integral
of this ¢-ghost can be evaluated on a flat geometry and can be applied to an arbitrary curved
manifold. Thus let us first formulate the path integral of this ghost field on a flat geometry,
and we apply this result on the computation on a generic curved geometry. Here we again

follow the convention in [Rg].

5.1 Formulation

The Dirac index is given by the Witten index in a following way:

index (@, A) = lim TY'{(~1)F e~ 77} = lim ()", 1
T B0 500 9D/2

Py, =:xe™:, xz=¢

é (5.1b)
where we expressed the trace with prime in order to evaluate the trace only over the one-
particle ghost sector. We also introduce the one-particle ghost “projection operator” Py,
instead of the trace with prime. We should also define the completeness relation of the
fermionic states as

dim R D
T = [ 11 dmiadnin Ina e (a1 = [ ] dmasdnt ) (]
i=1 a=1

(5.2)

The trace formulae for the ghost and physical fermionic states are also independently
defined by

dim R D
100 = [ [T s (ROl )+ 610 = [ T]axtaRase™ (32 [0]xe).
=1 a=1

(5.3)

In a usual case this trace formula gives the anti-periodic boundary condition on the fermion.
The fermion number operator (—1)¥, which acts on the physical fermion states, flips the
condition to the periodic boundary condition (see section 2.4 in [2d]). By using these
formulae, we rewrite the Dirac index given by (B.1]):

. . ()P

index D(w, A) = lim oDz d”zo/g(zo)

D —
X tr¢ tTgh ( 20, Xgh, X | H (P* + 7°) PanLon It S 20, Xt Xgh ) -
a=1

(5.4)
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Of course the ghost Hilbert space and the physical fermion Hilbert space are independent
of each other. Then these completeness relation act on the individual spaces without any
interruption. Now let us evaluate the trace in the ghost sector:

_ _ B 21
trah ( Xah | Pen Tene ™ " 7% | Xgn )

P o _ i . _ _B oz
= / T T i gn X Xen T | dm gndny, e 0 (X | Pon| mgn ) (Tgn le™ 777 | xgn ) -
i j

(5.5)

¥ : projects the ghost coherent state |7y, ) onto its one-particle part

Since Py, =: we~
Pan|ngn ) = c;-rnéh\ 0), the matrix element of the ghost projection operator Py, is easily

computed and yields

dim R
{(Xeh | Pan| mgn ) = Z Xi,gh Tgh = Xgh " Tgh - (5.6)

Then we can integrate out the ghost variables néh and X;en and define a new kind of

projection operator in the following way:

dim R
i 1— Xeh Xeh—Teh" — — h
/ H dnéthi,gh eXeh Xgh~7gh Tgh <Xgh |Pgh| TMgh > = Z H <77€,gthh) = P%X . (57)
1 1=1 (#1i

This operator annihilates all terms containing more than two ghost fields 7, and xgp.
Because of this we interpret this operator as a kind of “projection operator” onto terms
which are linear in 7y, and x,1, and onto terms independent of any ghost fields.

By using (.§), (b.7) and (B-29), and rescaling physical fermions as ¢¢ — (ﬂh)féw%,
while keeping the scale of the ghost fields unchanged, we can evaluate the Dirac index (p.])):

dim R D
_ (int
index D(w, A) = hm D/2/de0\/ xo H dxghd’l’]z7ghpg7};<engh‘>(gh H d¢%’bg<e—%51ﬂ)>’
a=1
(5.8a)
1 (int) _ L 0 M N m n m_n
_hSLH ——2ﬁh/1d7{gmn(:v)—gmn(:no)}<q "+ 0" +a a)
1 0 ab ﬁh
o [ drirem@ et - B [ arGio)
0 1 0
- [ arimas) @aTaga) + 5 [ 47 ES@) it (EaTata)
(5.8b)

with = zp + ¢ and the boundary conditions ¢"(—1) = ¢"™(0) = 0, fi)l dr¢™(7) =0, and

w%,qu<—1>=%‘gu<—1>, wiquw):%sgu(ou gD = (0)=0. (59
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In addition we can rewrite the expansion of gauge field in such a way as

0 1 0
0, Ay (o) [ dr i = =3 (0nA3(w0) — 0,43 (a0)) [ drdna”
-1 -1

1 0 .
= 5 [Fanta0) = £ AL A0 [ argni
1 0
= 5 Fulao) [ drani, (5.100)
—1
Fipn(e0) = 0 A5 () — 00 A5, (20) + £ A (z0) A7 (x0) ,  (5.10b)

where F  is the field strength of the gauge field and f“g, is the structure constant
of the gauge group. Notice that the ghost fermions &, and Zgh obey the anti-periodic
boundary condition, while the physical fermions & and & follow the periodic boundary
condition because of the insertion of (—1)f. This indicates that any closed-loop graphs of
the ghost fields yield zero amplitudes and that only tree graphs contribute to non-vanishing
amplitudes. Because of this, disconnected graphs with respect to the ¢-ghost amplitudes
does not appear in this path integral transition element. This statement is quite strong.

5.2 Chern character

5.2.1 Chern character on flat geometry without H-flux

Let us first consider the simplest system on a flat geometry with vanishing lux H = dH = 0.
In this case there are no (background) interaction terms which carries negative powers of
fBh, contractions of any physical fields ¢" and 97, become irrelevant under the vanishing
limit 8 — 0. Then we can neglect the term linear in A%, (¢ +¢) and the path integral (F.§)
is reduced to

. (— z')D/2 I dim R ¢h 1 gD
index P(A) = él_)o @n) 072 /d T H dxghdm ghP ollgh Xgh qu/;l bg 1LH > ’
(5.11a)
. 0 p— .
—gsfr};) = (F(z0))"; /1 dr (Egn + €1,(7)), (&on + qu(r))” (5.11b)

where (F(z0))%; = $FS (20)¢ e (T w)%j. As we mentioned before, we only analyze the ghost
tree graphs via the expansion of the above form:

(0 (1 [ ar G+ la(r), 6+ an(r))

0

=1+ Z 1 —37j,gh (Fk)]l Xlgh [k'/ doy - -dog 0(o1 — 02)0(0g — 03) -+ - 0(0k—1 — OF)
st —1

8 1L

1 .
LD i (F*) 1 (5.12)
k=1
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Note that the factor k! in the square bracket in the second line is due to the fact that we
can order the k vertices into a tree in k! ways. We also used the following integral:

0

1

/ doy---do6(o1 — 02)0(0g — 03) -+ - 0(0k—1 — 0f) = h (5.13)
—1 .

Integral of the ghost fields of (p.19) gives the following simple result:

dim R

. — . 0 — y
/ H dxgndTign Pﬁg’};< e'leh Xgh <exp <sz / ) dr (Egn + é:gu(T))l. (&en + équ(T))]>>
1=1 -

dim R 0o
A _ 1 ,
_ h ) _
= / | | dXZgth/i,gh Pﬁg,x g'lah Xgh (1 + g _k!nj,gh (Fk)]l Xlgh>
i=1

k=1
dim R ‘ 00 1 ) dim R )
= Z 5jj+ZH(Fk)]j = Z exp (F)Z, = Trr exp (F) ) (5.14)
j=1 k=1 i=1

where the symbol Trr denotes the trace in the R representation of the gauge group. Sum-
marizing the integral and rescaling the background fermion in such a way as f by

o %bg’ we obtain

™

D .
. a ? 1 (6% a
index D(A) = /dDazo H dy) g Trr exp ( — 2—F> , F= §Fab(x0) 1/)17bg1/)ll’7bg T, .

a=1

(5.15)

This is nothing but the Chern character of the gauge fields A%,. When we explicitly
calculate, we should use the formulae (f.13). In the same way as ([£29), let us integrate
the background fermions with respect to ([.13) and obtain
] 1
Trg exp (2iF> . F=ZFpe" A =dA+ANA. (5.16)
T

index D(A) — /

M

5.2.2 Torsional manifold

Let us easily generalize the equation (p.15) to the one on a curved manifold M (in the
presence of torsion H). Since the Hilbert spaces of the physical states and the ¢-ghost
states are independent of each other, the functional integrals of the Dirac index are also
performed independently. Then, combining the functional integral of the physical field
sector ([E21]) and the functional integral of the é-ghost sector (b.15), we obtain the Dirac
index in the following representation:

index P(w,A) = /M exp [5‘61‘ log (m)

1
RS = Rypap(wy) et Aeb, F = S Fa e“ N (5.17Db)

Trp exp (QLF) . (5.17a)
s

The index on a Riemannian manifold without torsion can be easily obtained when we
choose H = 0 in this form.
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6. Witten index in /' = 2 quantum mechanics

In this section let us analyze the Euler characteristics on the manifold with torsion H. In
the case of vanishing torsion, we will find a form of the Gauss-Bonnet theorem.

6.1 Formulation
The Euler characteristics y on the target space geometry can also be expressed in terms
of the N = 2 supersymmetric quantum mechanics (see section 14.3 in [[[9])
x = lim T {0 Do} = im T ][ (6" +2°) [T (@ =" e (6.1)
a=1 b=1
The chirality operators I'(5) and f(5) are given in terms of I'* = \/5121\? and [ = ﬁzﬁg,
respectively:

D
T = (—)PPTh - TP = (=)P22PPgp P = (=)PP T (8° +87) (6.2a)
a=1
_ _ _ N N D
L5 = (=PI TP = (=)P22PPyy ) = (=i)PP ()P T] (" - 2%) . (6.2b)
a=1

Notice that since the non-trivial values are given when D is even number, we find (—i)?P =
1. Then we formulate the Euler characteristic in terms of the transition element and

effective action (where z = xg + q):
D — —
X :%in%)/dem/g(xo) H (dﬁadn“dgadzadxad)\“> eSCeMemm
- a=1

(T @+ BNNKITT (7~ 3ol esp (= 5 i) 20,0).

[ (o) (7€) ()= Honao{ (+60) ™ (7460

-1
Bh

0
+ 2 / d7 Regap(w(x)) (¢ + qu)a(ﬁ + EQU)b(C + gqu)c(ﬁ + gqu)d
1

Bh
8

0
A7 Hane ) Hos () { (G 5™ (1 )20+ 5 )}
0
-5 / A7 O (lapa ()4 7+ Equ) ™ (€ + Equ) ™ + (€ + Equ) ™ (71 + Equ) ™}

0
_—/dwm% (6.3¢)
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where the functional Go(z) is given in (B.20d). Now let us analyze fermionic measure in
the form (p.d). The effective action S (int) contains €% and €% whose boundaries are ¢ and

int)

7, respectively, and 7, ¢ and A\, A do not appear in S Then let us rewrite the path

integral measure with fermions:

[ dFadn® d¢*dla dXadA® = [ ] (d7ad¢®) (dXadn®) (dCadA®)

a

= [T (@7d¢®) (2Pax + m)ad(n = 2)) (2P4@C + NudA=0)7) , (64a)

where we implicitly used the orderings of d7ij and d¢ (B-H). Under the integral with [T, (A\*+
¢") T1.(n* — A®) which can be regarded as the fermionic delta functions, we can see { = —\

and 1 = A. Then, after a tedious computation, we obtain

/ [T d7adn® d¢edC, dxgd® o€+ FAnt 2 TT (AP 4. 20 TT (W) = / [ ] dmadce,
a b ¢ “

(6.4b)
where we used the fermionic delta functions:
D B D
/Hd(ZJr Na [[®+) =1, (-1)P / [[dCe O =T] (n*—¢*) .  (64c)
a b a=1 a=1
Then we rescale the fermion to remove the Sk dependence on the measure in such a way
as
1 P D ,
— a —/ la a — —gcla
COLE 1_11 A7 d(” = r_[ldnadc L €= (Bn)TaEe (6.5)

Then the rescaled S is given by (where we omit the prime symbol)

gy L /01 dT% [gmn(w) _ gmn(xo)] <qmq” L 4 ama")

h 3h
T Odmm<w )7+ E) (G )= 5 Fan(0 { ()4 (7o)
\/ﬁ -1 e au qu o ma qu qu
0
" % /1 A7 Redap(@(@)) (€ + Equ) (71 + Equ) (€ + qu) (T + Equ)
1

0
- g / dTHabe(x)Hcde(x) { (<+£qu)ab6d+ (ﬁ‘{'gqu)ade _2(C+£qu)ab(ﬁ+gqu)0d}
-1

0
-5 / 7 O (Ho (o)) { 07+ )" (€ + €)™ (€ €)™ 7+ Ean)™ }

0
- — /1 dr Ga(z) . (6.6)

Notice that the bosonic and fermionic propagators are now proportional to Sk and /Gh,
respectively (we have also rescaled the fermion propagator):

(" (0)g" (1)) = —Bhg™(2) Ao, T) , (6.7a)
(€4u(0)Eou(T)) = /BRE™ O(a — 7). (6.7b)
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Then we easily find that each contraction among quantum fields yields Feynman graphs of
higher order in Sk, which goes to zero in the limit 87 — 0. Only the interaction terms given
by background fields ', (* and 77* are independent of $ and they give rise to the relevant
Feynman graphs. Then, we can truncate S in order to obtain the Euler characteristics
on the D-dimensional geometry M in the path integral formalism:

X(M) = D/2/ dPxo/g(x0) Hdnadga<e hs(m)> (6.8a)

1 .
__S(lnt) _ __Rabcd( ( )) Cab —cd _aa(Hbcd)(xO)(ﬁaCde‘FCaﬁb0d> : (6.8b)
h 4 6
where we used Hgpe(z9) = 0, Redap(w) = Raped(w) and the second Bianchi identity

Raped(w)+Racds(w) +Radve(w) = 0 without torsion: Rpeq(w) (¢ = —3 Rapea(w) ¢
Since there exist only background fields, we do not have to introduce quantum propagators
to contract interaction terms. The Feynman amplitude of the path integral is given only
by the expansion of exp(—,liS (int)) with noticing that the number of ¢ should be equal to
the number of 7 to saturate the fermionic path integral measure. Since each term in ([.8H))
carries even number of background fermions ¢ and 7, the path integral with D = 2n + 1
becomes trivial.

Next let us investigate the formulation in various geometries in diverse dimensions.
We can easily find that the second and the third terms do not contribute to the Feynman
graphs in the case of D = 2. This is consistent with the fact there does not exist a totally

antisymmetric torsion in two-dimensional geometry.

6.2 Euler characteristics

Next let us investigate the formulation in various geometries in diverse dimensions. We
can easily find that the second and the third terms do not contribute to the Feynman
graphs in the case of D = 2. This is consistent with the fact there does not exist a totally
antisymmetric torsion in two-dimensional geometry.

6.2.1 Riemannian manifold

It is worth reviewing the case of the Riemannian manifold without torsion. The action is
given as

1 . 1
_Es(lnt) — _ZRabcd(w) CabﬁCd , (6.9)

Then the path integral formulation is described in the following way:

xX(M) =

(2m)D/2 / d xo\/TOH di*d¢® exp ( Rapea(w )Cabﬁcd)

1

)P/

1

)l Earag, €0 MdQ"xovg(wo) (Ramblbz(w)"'RGQ”‘1a2”b2n_1b2n(W)>
1

)

(471' iy a1---a2n /MRala2 (w) Ao A R*2n-102n (w) , (6.10)

(871'
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where we used the formulae in Euclidean space:

1
A2 o/ g(xo) E0r7b2n =P A A€l R®(W) = §R“bcd(u)) e Ned . (6.11)

Non-trivial value of x(M) is given only when D = 2n = 2k and all indices of totally
antisymmetric tensor Epeq... are the frame (local Lorentz) indices with Euclidean signature.
Then we do not mind the positions of the indices.?> We also used the following formulae in
the same way as ([.14):

/dg1 oo dCop Croon = (=1)™, /dﬁzn---dﬁl TR I (6.12)

6.2.2 Torsional manifold
In this case we should analyze the full action in (p.8b)):

1 . 1 1
__—¢fnt) _ _ = ab—cd _ * —a ~bed a=bcd
= 1 Rabea@) 7% = 204 (Hoca) (7°C" + ) . (6.13)

We omitted the argument xy. In the same as the analysis on the Riemannian manifold,
we can only investigate the case D = 2n, i.e., the case of the even-dimensional manifolds.
The expectation value of the exponent is

—£50mt) 1 ab=c 1 —a ~bc a—=bc
(em®S™Y = exp( — 7 Rabed(w) ¢ — 0a(Hyea) (7 ¢t 4 ¢t d)) (6.14)

1 1 1
= exp <—1Rabcd<w><abﬁcd) exp (—Eaa(Hbcdm“cbcd) exp (—Eaawbcd)c“ﬁbcd).

Since the path integral measure in (B.§) requires that the number of the background
fermions ¢ should be equal to the number of 7, the third exponent in (f.17) should be
contracted only with the second exponent. The second and the third exponents cannot be
contracted with the first exponent. Then (p.17) is truncated to

_1gGn) 1 1 v\ 1 o ea) (1 aped )
CHENS DY klM(—ZRamd(w)c "7 d) <—gaa<Hbcd>n ¢’ d) <—68a(Hbcd)C T d)

k+20=n

22 1\"
- Z 32010101 <_Z> (Ra1a2b1b1 T Ran—lanka—1b2k>

k+20=n
X <801 (Hd1d2d3) T 80@ (Hd3z72d3z71d3z)> <3€1 (Hf1f2f3) tr aez (Hf3z72f3z71f3z)>

« Cal"'a2kcl"'céf1"'f3lﬁbl"'b2kd1"'dlel"'e?;l

22 1\"
= Z LI ( _ Z) gar-aggcicofifap gbi-bapdi--deer--ese Cl"'Qn ﬁl'“Qn
34cklele!

k+20=n
X (Ra1a2b1b1 T Razk—la%bzk—1b2k> (801 (Hd1d2d3) T acl (Hd3£—2d3e—1d3£)>
X (851 (Hf1f2f3) T 864 (Hf3z72f3zf1f3z)) (6'15)

3In the case of curved indices, the positions of indices are quite important we should really mind whether
Emnpg--- 18 & tensor or a tensor density. In the case of frame coordinate indices, the weight /g(zo) does not
appear.
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Substituting this into (6.§), we obtain

1 226 a azrC C,
cecofifzp obr--bopdi--dger e
xX(M) = —(8 W E S car-agpcrcefifap gbr-bopdi--deer--ez
k+4-20=n

2
X Md "x0 V g(xo) (Ralazblbl T Ra2k—la2kb2k71b2k>

X <801 (Hd1d2d3) tr acz (Hd3z72d3e71d3z)) (861 (Hf1f2f3) T 864 (Hf3z72f3z71f3z))'
(6.16)

Fortunately, we can furthermore reduce the above representation by using the second
Bianchi identity of the Riemann tensor ({A.6b)) and the closed condition dH = 0. For
simplicity, let us analyze the case £k = 1, £ = 2, from which we can read a general state-
ment:

ga1a20102f1MfﬁgbledldQelm% d2nx0 V g(xO)Raltmlnbl a61 (Hd1d2d3)662 (Hd4d5d6)8€1 (Hf1f2f3) X

362 (Hf4f5f6) _ gal...fGEbl..~e6/d2nanq (all terms)
_gar"fegbr"e(s d2nx0 \% g(xo)aq {Ra1a2b1b1 } (Hd1d2d3)ac2 (‘Hd4d5d6)a€1 (Hf1f2f3)662 (Hf4f5f6)
_gal"'fﬁgbl"'eﬁ d2n1'0 \ g(xO)Ralazhbl (Hd1d2d3){aclac2 (Hd4d5d6)}861 (Hf1f2f3)862 (Hf4f5f6)

_5a1~~~f6€b1~~~66 danO \% g(xO)RGIGlebI (Hd1d2d3)ac2 (Hd4d5d6)acl {861 (Hf1f2f3)a€2 (Hf4f5f6)}'
(6.17)

The first term in (p.17) vanishes if there are no boundaries on the manifold. The second
term also vanishes via the second Bianchi identity (JA.6H). The third term is zero because
the derivatives are symmetric, while the indices are anti-symmetric under the existence of
Enfo The fourth term also vanishes because the closed condition dH = 0 appears as
EnJ6Q, (Hy,1,1,) = 0. Other derivatives also yield the same result. Thus we find that the
second and the third exponents in (p.15) should not contribute to the Euler characteristics
and we can set £ = 0. We conclude that the Euler characteristics on the torsional manifold
without boundary is equal to the ones on the Riemannian manifold (.10):

1 a n. S
X(M) - (87‘(’)"77,! en 2n€bl bon Md2 Lo g(xo)(RGIGlebl e Ra2n—102n52n—1b2n)
1
= gy Eoron /MR“1“2 (@) A--- A R%2n-1020 () | (6.18)

7. Witten index in /' = 2 quantum mechanics II

Finally we will discuss the derivation of the Hirzebruch signature on a torsional manifold in
the path integral formalism. We also use the N/ = 2 supersymmetric quantum mechanical
path~integral, while we only insert I'(5) into the transition element instead of the insertion
I'5)'(5) in the case of the Euler characteristics. We review the derivation of the signature
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on the Riemannian manifold. Next we discuss the analysis of the signature on a torsional
manifold in the same strategy.
7.1 Formulation

As mentioned in the introduction, the Hirzebruch signature is a topological invariant which
gives the difference between the number of self-dual forms and the number of anti-self-dual
forms on the manifold. Since we analyze the difference of the forms, we analyze another
Witten index defined in the N' = 2 supersymmetric quantum mechanics in the following
form (see section 14.3 in [L9)):

D
. =~ _Bp
o= éli% Tr{F(5 ﬁ%} — [1313%( )D/ZTr;ll_[1 ((,5‘1 + <p“) o i (7.1)

Here we did not insert 27P/2 because in this system 1§ is also dynamical. The chirality

operators I'(5) is again given in terms of the operators ¢f:

Ds) = ()P0 TP = (i) P22P/20 ) g = D/ZH ). (1)

Notice that since the non-trivial values are given when D is even number, we find (—i)?? =

1. In addition, we prepare the trace formula and the complete set of the fermion coherent
states (B.5). We obtain the explicit expression of the topological invariants with respect to
the V' = 2 quantum mechanical path integral in the same way as (6.3):

i\D/2 . .
7= ﬁli’LO 27rﬁh yD/2 /d 70 9(wo) H (dnadﬁ d dCa)
CCHCn—Tin+T b, #b 1 q(int)
 eSCHCn=Tm+7i¢ 1;[ (77 +¢ )<exp ( hSH )> ) (7.3)

where S in (7.3) is also given by (.3d) which appeared in the previous subsection. Now
let us consider the fermionic measure in this path integral form. In the same way as the

Dirac index, we obtain
/ H dm,dn®d¢ede, oCCHCn=Tm+7¢ H(nb + Zb)
a b
— (2" [ []dmd¢" (@ + mad(y — 3 e O [ Jof + 3
a b
~ [ Hanac TIe -m). (7.4)
a b

This measure gives the fermionic delta function which indicates the coincidence of the

background fermions (* = 7%

/ [Tam I =) fm) = £(O) . (7.5)
a b
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To remove the § dependence in the path integral measure, we rescale the fermion

d7,d¢e -7 = dm,d¢ [ -7") , (7.6a)
e J Tmac T3 = [T T]

Nt = (%)1/27“ , ("= <%>1/2C'“ ) (7.6b)

Then the rescaled S0 (B:20d) in the path integral is given by (where we omit the prime
symbol)

o= 5-»0 D/2 /dDCEO\/TO H d7jadc* H <eXp < B ﬁs(lm)» ’

(7.7a)
h H = T 5 /_01 dT% [gmn(x) - an(ﬁﬂo)} <qmqn + 0" + aman)
- / Oqu <wmab(x)(ﬁ+gqu) (C+€qn) "= = Himap ){(C+§qu)“b+ (ﬁ+2qu)“b}>

1 0 _ ~
+ % /1 dr Rcdab(w(x)) (C + gqu)a(ﬁ + gqu)b(g + £qu)c(ﬁ + fqu)d

1 /OdTH H., (x){(<+§ )“b6d+(_+f )ade_Q(C+§ )ab(—_i_g )cd}
8ﬁh abellcd qu n qu qu n qu

0
— @1h / d7 O (Hppg) (x ){(ﬁ + Equ)™(C 4 €qu)™T + (¢ + €)™ (M + gqu)npq}
- %/ dr (@) (7.7b)

The bosonic and fermionic propagators are of order in Sh. Let us truncate this action. In
the same analogy to the Dirac index, disconnected Feynman graphs might contribute to
the amplitude. In the same way as previous case, the fermion propagator is given by

(€8, (0)€ (7)) = BRE™0(0 — 7). (7.8)

7.2 Hirzebruch signature
7.2.1 Riemannian manifold

This case is quite simple. Since there are no background interaction terms of order in
(BR)~! which contribute to the disconnected graphs, we only consider one-loop Feynman
graphs. Then, we neglect interaction terms carrying more than three quantum fields. We
can also neglect the last line in ([7.7H) which yields the graphs of higher order in Sh. We
also use the condition by Riemann normal coordinate frame 0p,gmn (z0) = wmap(o) = 0 at
the point xy. We can further neglect interaction terms which are irrelevant in the vanishing
limit 3 — 0. By using the Riemann normal coordinates on the second line in (7.7H), the
fermionic delta function (7.4) and the first Bianchi identity (A.6d) acting on the fourth line
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in ([7.7H), we obtain a much simpler expression of the Hirzebruch signature:

_;\D/2 D 1 .
o= iy o [ 470t [1ac (e~ 5. 2=
a=1
) 0
—%S(mt) _ _M%Rmnab(w(xo)) Cab /1 dr ¢™g"
1 . I Y A o
+ g7 Rabed (0(20)) ¢ b( -3 / dT€G. i — 5 / TGS + / ldfsqusziu)

(7.9b)

We should notice that the fermionic fields in the above path integral have anti-periodic
boundary condition. Originally the fermionic fields are introduced as the fields with anti-
periodic boundary condition (see the discussion in section 2.4 of [R6]), which is changed
by the insertion of operators. Now, in the form (f.9) there are no additional operator
insertions in the path integral measure. Thus the fermions in ([.9) keep the anti-periodic
boundary condition.

We can easily find that the Feynman graphs will be described as the trace of Riemann
curvature two-form in the same way as the Pontrjagin classes. Here let us remember a
property that the trace of odd number of Riemann curvature two-form vanishes tr(R2*~1) =
0. On the other hand, the Feynman one-loop graph which contains all of three interaction
terms in the second line in ([.9H) always has odd number of the interaction vertices. This
indicates that the third interaction term in the second line gguggu should not be connected
to the other two interactions (£éu§gu and Eguggu) in the graphs. These other two terms
should be connected to each other. Furthermore, because of the anti-periodicity of the
fermions, we also find that the closed loop graphs which contain only the third interaction

gngu vanish in the same reason as the vanishing closed loop graphs of é-ghost in (5.11H),
which also has the anti-periodic boundary condition. The term in the first line exactly gives
a same Feynman graphs as the Pontrjagin classes ({.15). Summarizing these comments,
here let us again describe the action in (7.9):

1 0 1 0 1 oo
- (1nt):__ mn - c ed c ¢d
hS 3h Rin / drq™q 260 Req /1 dr gquéqu 2ﬂhRCd /1 dr gqugqu

1 1—
1 1
R = §Rcdab(w(ﬂfo)) ¢ = §Rabcd(w(~"30)) ¢ (7.10b)

Let us rewrite the exponent (exp(— S(mt))> in terms of the effective action W in such

a way as
_%W = o (ex il’LS(mt)>> = g %<<< 15’(1nt)>k>>
~ ; %<<< B %Sp>k>> + %%WM«( B %S>k/2< - %3>k/2>>
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=S ) R B [ an e an @i i)

0

=1 1 \2¢ 0
+Z€'£'<_%) Ralbl'-'RabeRcldl'-'Rczdz/_1d7-1"'d7—5/_1d0'1"'d0'5

< (((emeh) () (€au&h) () (EE) (00) - (€€ (00))) . (T.1)

where we extracted terms which contribute to the Feynman graphs in the vanishing limit
B — 0. The bracket ((---)) gives connected Feynman graphs. The number of the vertices
S should be equal to the number of the vertices S. Because of this, we find that & should
be even: k = 2/.

Since we have already analyzed the first connected graphs in the Pontrjagin
classes (.1§), it is easy to analyze the first term in (7.11):

[e.9]

1 1 nim nom, nEem
(1st term):kz_lﬁ< 5h> (k— 1)'2]C 1( Bh) Rpini Rimong - Rengn g2 g8 - g™
X / dT1 s di 8TIA(71,72)8T2A(72,73) s ark_lA(Tk,l,Tk)aTkA(Tk,Tl)
1 & 1 R
=3 ; E {(2R) }Ik = —trlog (sinhR) . (7.12a)

Next let us here evaluate the second connected graphs in (F.11)). In order to make one-
loop graphs, ¢ vertices S and ¢ vertices S should be alternatively located on the one-loop
graph in (¢ — 1)!¢! ways. Furthermore, there are 22~! ways to contract these vertices in
terms of fermion propagator (F.§) to yield the trace of curvature two-forms tr(R%*) with
sign (—1)**1, which comes from permutation of indices. Then, the effective action (:11)
is evaluated in the following way:

(2nd term) = Z ﬁ( - 2’%}1)%(6 S22t (1) (BR) % (R

/ H dridof(m1—01)0(11—00)0(T2—02)0 (T2 —01) - - O(T9—04)O(T0—00—1)

= - Z ﬂ (R%)J = ltr log <cosh R) (7.13)
2 — l 2 ’ ’
The term ¢ = 0 does not contribute to connected graphs because this term does not carry

any background fermions. The function Jy is defined in such a way as

0o ¢
Jop = / H drido; 0(m — 01)0(m1 — 00¢) O(172 — 02)0(172 — 01) -+ - O (10 — 00)0 (70 — O4—1) -
—1:

(7.14)
Thus, substituting (7.124)) and (7.13) into (F.11]), we obtain
1 1 1 R
——W = —trl 1 h = —trl . 1
hW 2tr ©8 (SlnhR> * tr o8 (COS R> 2tr o8 (tanhR) (7.15)
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Rescaling (¢ — 2‘—;{“, we finally obtain the Hirzebruch signature on the Riemannian

manifold
D 1 —iR/2
o= /deow/g(l“o) H d¢® exp litrlog (m)] , (7.16)
a=1

or, if we integrate out the fermionic fields and using the following formula (in the same
way as (p.19)), we simplify ([(.1¢) and obtain

0—/ ex ltlrlo M
= L O 28 tann(iR/2n)

7.2.2 Torsional manifold

1
, Rpn= §Rmmb(w) e Nel . (7.17)

Now let us analyze the signature on the torsional geometry. It seems that the action ([.7H|)
carries the background interaction terms of order (3h)~! in ([.7H), which cause the diver-
gence of the amplitude in the vanishing limit 5 — 0. Fortunately, however, the fermionic
delta function ([-4) removes this difficulty:

Reaan(w (o)) { C7°¢"} g = Pl ((20) ¢ = 0. (7.188)
HeabHcde(l“o){Cade + 7t — QCGbWCd} Iz 2HeabHcde($O){<ade - CIde} =0,

(7.18b)

am(anq)(xO){ﬁanpq + Cmﬁnpq} @) = %(dH)mnpq(xO) Cmnpq =0 5 (7186)

where we used the first Bianchi identity (JA.6a) and the closed condition dH = 0. Since
we find that there are no background interaction terms with (3h)~!, it is sufficient to
investigate the interaction terms equipped with two quantum fields in order to generate
the closed one-loop Feynman graphs. Here let us study the truncation of the action in ([.7H)
with the fermionic delta function (f.4). The first and the last lines in ([7.7H) disappear.

The second and the third lines in ([/.7H) are truncated to

0
1 / dwim<wmab(x)(ﬁ+5qu)“(<+£qu)b_leab(:c){(<+£qu)“”+(ﬁ+5qu)“b}>

Bh) 2 ()
0
=~ R (a0 ¢ [ drqni”
__ 15, a [* grgmin 7.19
=~ Rty (a0 ¢ [ drqni (7.192)
1 0 a(—= - b C(= s d
L / A7 Rega(@()) (¢ + Equ) (7 + Equ) (¢ + Equ) (7 + Equ)
200 J -1 | 2)

0 0 0
_ %Rabcd(w(mo))gaT_ %/_1&5;?1 - %leTEgﬁJr/_ldnguEgu) . (7.19b)
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The fourth line in (7.7H) is also truncated to

. 0
o O (oo o (20) / dr qmqn{cabcd L+ cobed _ QCachd} —0
-1

fouth line
( ) (2)) 165h
(7.20)

where we used Hppp(zo) = 0 and OpHape(zo) # 0. The fifth line in ([.7H) is more
complicated:

ﬁfth hne ‘@ Gﬂh / dr (qraraa(Hbcd(xO)) {_gugbcd_i_?)gabcg(c]lu+§gugbcd+3gabcggu}
+ 3aa(Hbcd($0)) {_gué.gu CCd + Cabg(c]tdl + Sguggu CCd + Cabggﬁ}>

1 o -
~ R Ou(Hiealea)) 0 [ (€, + €50

2Bh Da(Hyca(0)) C° /dT ARSI (7.21)

Notice that the first line in ([[.21)) does not contribute to the amplitudes: each term is con-
tracted to the terms in the same line, which yields zero amplitudes because the background

fermionic fields are anti-symmetric in the amplitudes in such a way as ¢ebc¢def = _¢defcabe,
Now, we combine (7.19H) and (7.21]) to yield

L L
45h 43h
1

0 —
+ 350 <Rcdab(w($o)) — Oa(Hbea(0)) + Ob( acd(ﬂco)))g““l /1 dr 2.,

0 0
([TI98) +([21) = — —— Redap(w (20)) ¢* / ) dr €88 — —— Reqap (w4(0)) ¢ / ) dr &

1 0 = 1 ’ z
= —MRcdab(w-‘r(xO))Cab/_ldT{ gﬁ“‘féﬁ}+%Rcdab(w—(mO))CCd/_ldnguggu

_LR ( ( ))Cab l/odgcd l/odgcd_{_/odgcgd
_Qﬂh abed \ W4T 5 . T qu 5 . T qu . T quSqu .

(7.22)

Then, we rewrite the action ([.7H) by summarizing ([-194), (7.2I) and ([-29) in the fol-

lowing form:

noH Qﬂh mna + .

1 I R 0 _
+ g Raalws e ¢ (=5 [ argagti=d [ arga@h [ area@d,).
(7.23)
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This form is exactly same as ([.9H). Then the path integral of ([.23) is also given in the
same as ([7.1€):

o 1 —iR™) /2
_ D a
o= /d xox/g(:co)alzll d¢” exp litr log (tanh(—iR(+)/27r)>] ,  (7.24a)

1
R = 2 Roman(w+(20)) ¢*C° (7.24b)

or, if we integrate out the fermionic fields and using the following formula (in the same

way as (0.17))
D
/H dCa Cal---aD — /dCIdCQ . dCD CICQ . CD . guazap (_1)D/25a1a2---aD , (725)
a=1

we simplify ([.24) and obtain

1 iRY) j2r
o= /exp §t1‘ log <tanh(iR(+)/27T) ’ (7.26&)
tr(Rer)) — R1(”rJLr1)n1R1(”rJLr2)n2 L. R%C)nk gmngnzmg . gnkml ’ (7.26b)
1
Rﬁrfr? = §Rmnab(w+($0)) " Neb . (7.26¢)

8. Summary and discussions

In this paper we have studied various topological invariants on the torsional manifold in
the framework of supersymmetric quantum mechanical path integral formalism. First we
constructed the ' = 1 supersymmetric quantum mechanics (B.6) whose target space corre-
sponds to the torsional manifold. We extended this to the A’ = 2 quantum mechanics (2.14)
with introducing a closed condition of the torsion. Next we described the transition ele-
ments which appear in the calculation of the Witten index. Following the work [, we
rewrote the transition elements from the Hamiltonian formalism to the Lagrangian formal-
ism (B.20) in the V' = 2 case, and (B.23) in the /' = 1 case. Since we have already known
these topological invariants on the Riemannian manifold in the framework of the quantum
mechanical path integral, we applied the same formalism to the analyses of the Witten in-
dices. Then we realized the formulation of the Dirac index on the torsional manifold (p.17)
which have already been investigated by Mavromatos [R(], Yajima [RI], Peeters and Wal-
dron [R7, and so forth. The point is that we should carefully use the Riemann normal
coordinate frame on the spin connection (and the affine connection) equipped with torsion.
We also analyzed the Euler characteristic (6.18) and the Hirzebruch signature ([.26) on the
torsional manifold. These modified values should also be topological invariants because we
started from the well-defined supersymmetric algebras (R.1)) in the ' =1 case and (2.17)
in the N/ = 2 case, respectively. In these systems we can define the bosonic and fermionic
states whose energy levels are degenerated. We should also find the zero energy eigenstates,
which gives the Witten index as the topological value. We evaluated these Witten indices
in various supersymmetric systems.
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The most significant result in this paper is that the Euler characteristic (6.18§) is not
modified even in the presence of torsion, while the Dirac index (p.17) and the Hirzebruch
signature ([(.24) are. Then we conclude that if the compactified manifold has the Bismut
torsion ([l.2d)) with the constraint ([l.3d) in string theory compactification scenarios, the
numbers of generation in the four-dimensional effective theory is not changed from the
numbers of generation derived from the corresponding Calabi-Yau manifold without the
torsion.

In this paper we imposed the closed condition dH = 0 on the totally anti-symmetric
torsion. Peeters and Waldron [RJ] have already investigated the Dirac index on a four-
dimensional geometry with boundary in the presence of a totally anti-symmetric torsion
H, and have discussed the role of dH in the Feynman graphs. The four-form dH can be
described as the Nieh-Yan four-form N (e, H) = d(e? A H4), which appears in BJ] and is
applied to the analysis of the chiral anomaly [BJ], and the Dirac index [RZ. To complete the
analysis of the index theorems on a torsional geometry in the presence of non-vanishing d H
is of particular importance when we study the string theory compactified on a G-structure
manifold 7, B, B4].

This four-form dH also appears and plays a crucial role in the anomaly cancellation
mechanism in heterotic string theory (see [B4, 19, R as instructive references). In the usual
anomaly cancellation in heterotic string, the Bianchi identity of the NS-NS three-form H
is given in terms of the Riemann curvature two-form and the field strength of the gauge
field BY): dH = —d/[tr{R(w)AR(w)} —tr(F A F)]. In the presence of non-vanishing H-flux,
the spin connection w in the Bianchi identity is modified to wyyap = wyap + Hyap and
the Bianchi identity is rewritten such as

dH = —of [tr{R(w+) A R(wy)} — tr(F A F)} . (8.1)

The modification of the Bianchi identity (B.1]) was, for instance, investigated by Hull [Bf] in
the framework of the worldsheet sigma model. Bergshoeff and de Roo applied (B.I]) to the
supergravity Lagrangian with higher-order o’ corrections [B7. Recent papers follow this
modification and analyze the structures in the effective theories from the heterotic string
(see, for instance, [[3, [[3, P4, B[] and references therein). Since, even in the presence
of the condition dH = 0, we have completed the derivation of topological invariants which
will contribute to the anomaly in string theory, we will be able to derive the above modified

Bianchi identity in the flux compactification scenarios in an explicit way.
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A. Convention

We introduce vielbeins ep;” and their inverses E4™, which come from the spacetime

A

metric gyn and the metric nap on orthogonal frame via gary = nap ey en® and nap =

gun EaAM Eg™. By using these geometrical variables, let us define the covariant derivatives
Dps(w,T') in such a way as

[DM(P),DN(F)]AQ = —RPQMN(F)AP + QTPMN DQ(F)AP R (Alg
REqun(T) =0y T on — OnTF our + TP T oy — TP gl fon . (Allh

Dy (D)An = 0 An — TP N Ap (A.1a)
Dy (D)AN = 0o AN + TN pp AT (A.1b)
Dy (T)gnp =0 = dyrgne — T9Nargor — Tpagng (A.lc)
Du(D)g™" = 0= omg™" + TN qug?” + T ug™? (A.1d)
DM(w,F)eNAEO:aMeNA—i—wMAB en? — TPy ep? , (A.le)
Dy(w,TVEAN =0 =0yEaAYN — EgN wpBa+TVpyr BT, (A.1f)
)

)

Note that Ajs in the above equations are vector. ' /n is the affine connection whose
two lower indices are not symmetric in general case. The anti-symmetric part of the affine
connection I'P (] is defined as a torsion TP vn, while the symmetric part T'P (MN) 18
given in terms of the Levi-Civita connection I’g v and torsion terms in the following way:

Iy = 11P(MN) +FP[MN} ; (A.2a)

FP[NM} =T"Nu FP(MN) = Toun — T v =T ar (A.2Db)
1

Thun = §QPQ (Om9QN + Ongnq — dQgmn) - (A.2¢)

Then the affine connection is also given in terms of the Levi-Civita connection and the
other:
TP un =Tiun+ K un, K'un =T un —Tu"~N —Tn"u - (A.3)

The tensor Ky n is called the contorsion.
We also introduce the covariant derivative induced by the local Lorentz transformation
acting on a generic field ¢’ as
. . i g . ,

Dar(w)¢* = {8} 0ar = 5wn P (San)’s o7 | (A4)
where ¥ 4p is the Lorentz generator whose explicit form depends on the representation of
the field ¢’. The curvature tensor associated with this covariant derivative is given in terms
of the spin connection

Dy (@), D (@)]é = —5 RPan(w) Sape | (A.50)
RAB yn(w) = dywn?? — Onwnr P + wnrc wn P — wnAcwn P . (A5D)

We also describe the first and second Bianchi identity on Riemann tensor:
Ist: 0= R npo(To) + RMpon(To) + RM gnp(To) (A.6a)
2nd: 0= VyRY por(To) + VoRY prur(To) + VRRY prio(To) - (A.6b)
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B. Formulae

In the formulation of discretized and continuum path integral in quantum mechanics, we
define a number of functions without ambiguities [Rf]. Here let us summarize functions

which appear in propagators and their derivatives in the quantum mechanics.

A(o,7) =o(t+1)0(c —7)+71(c +1)0(T —0) = A(1,0) , (B.1a)

60— _ = % , o(r — a) — o —)+1, (B.1b)

0s0(c —T) = 5(0 —7), 02A(o,7)=6(0—7), (B.1c)

/ da/ dr A(o, 1) =1 / da/ dré(oc—71)0(c —T1)0(T —0) = i (B.1d)

Notice that (o — 7) should be regarded as the “Kronecker delta” instead of the delta
function because this function appears in the discretized form of the path integral and we
should take the continuum limit carefully.

By using the above basic functions, we should compute various kinds of integral when
we analyze loop diagrams in the path integral formalism. In this paper we mainly use a
set of useful formulae which appear in the derivation of invariant polynomials such as the
Dirac genus, the Chern characters, the Hirzebruch signature, and so forth. Here we only
list the formula for these invariant polynomials. When we derive the Dirac genus, we use
the integral I} defined as

0 0
Ikz/dﬁ- . / d1,07, A(T1, 72) 07, A(T2, 73)- - -O7,_, A(Th—1, Tk ) Or, AT, T1), (B.2a)
1

k y/2

Y
aTiA(TZ'7Ti+1) =T; + 9 TZ+1 Z ?Ik = m . (B2b)
k=2 y

The following two integrals play important roles in the derivations of the Chern classes and
the Hirzebruch signature:

0 0 0
/ dO’l/ dO’Q---/ dO’ka(O'l—0'2)6(0'2—0'3)---6(ka1—O’k)a(O'k—O'l)ZO, (B.3a)
-1 -1 -1
0 0 0 1
/ doy / dog - - / doy 0(o1 — 02)0(02 — 03) - - O(0)—1 — 0)) = R (B.3b)
-1 -1 -1 .

for k > 2. We also use the following integral when we derive the Hirzebruch signature:

Jop = / H drido; (11 — 00)0(m1 — 01) O(12 — 01)0(72 — 02) - - O(10 — 09—1)0 (70 — 09)
i=1
(B.4a)

1 /+1

y? Jop = log (coshy) . (B.4b)

=
/=1
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